コヒレント特設ページはこちら

Science/Research 詳細

光量子コンピュータチップ実現にむけた高性能量子光源の開発に成功

April, 1, 2020, 東京--日本電信電話(NTT)は、東京大学と共同で、室温動作可能な将来の汎用光量子コンピュータチップに必須となる高性能な量子光源(スクィーズド光源)を実現した。スクィーズド光とは量子ノイズが圧縮された光で、これを用いることで量子もつれを作ることができる。光量子コンピュータチップ実現には広い帯域と高い圧縮率を持った連続的なスクィーズド光が必要とされている。
 スクィーズド光は非線形光学結晶に励起光を照射することで生成される。従来手法の多くは、鏡を用いて結晶の中で光を往復させることで量子ノイズ圧縮率の高いスクィーズド光を生成していた。しかし、その帯域は構造上の理由から高々ギガヘルツオーダーに制限されていた。結晶中に光の通り道を作り、励起光が1回通過する間にスクィーズド光を生成する手法が広帯域なスクィーズド光源として期待されている。この手法ではギガヘルツの1000倍にあたるテラヘルツオーダーの帯域が期待できるものの、これまで連続的な光として報告されている量子ノイズ圧縮率は37%程度にとどまっていた。
 今回、NTTで研究開発を進めてきた高性能な非線形光学結晶デバイスと東京大学の有する高度光制御・測定技術により、75%以上の量子ノイズ圧縮に成功し、この手法における世界最高値を更新した。この値は、任意の量子計算を実行できる量子もつれ(2次元クラスター状態)の生成に必要となる65%を超える値である。また、得られたスクィーズド光はテラヘルツオーダーの帯域を有することが確認できた。これは飛行する光量子ビットの間隔をおよそ300ミクロン程度に短縮し、NTTが光通信応用に開発してきたような光学チップ上での光量子計算を可能にする。さらに計算のクロック周波数を上げることができることから、高速な量子コンピュータの実現も期待される。
 研究成果は、「APL Photonics」に「Featured Article」として掲載された。
(詳細は、https://www.ntt.co.jp)