マルチスペクトル/ ハイパースペクトルカメラ、 産業用イメージングの範囲を拡大

ジェームズ・キャロル

可視波長域を超えるイメージング手法は、マシンビジョン分野の向上につな がる。

マルチスペクトル/ハイパースペク トルカメラは、多数の分野や業界に導 入されているが、こうした技術の出現 によって改善された分野の1つが、産 業用検査である。食品や飲料商品の品 質検査、医薬品の検査と分類、色検査、 プロセス監視は、非可視光イメージン グが今日のマシンビジョンシステムに どのように活用されているかを示す、 ほんの一部の例にすぎない。

マルチスペクトルイメージング

可視波長外の画像をキャプチャする ための2つの方法が、マルチスペクト ルイメージングとハイパースペクトル イメージングである。ハイパースペク トルイメージングでは、狭帯域で一般 的には連続したスペクトルバンドを使 用し、おそらくは数百や数千ものスペ クトルを処理するのに対し、マルチス ペクトルイメージングでは、帯域幅が まちまちで必ずしも連続ではないスペ クトルバンドを使用し、最大で10本 のバンドが戦略的に選択される。

どちらの手法も基本的には同じイメ ージング概念に基づき、マルチスペク トルイメージングのほうが、使用する 離散スペクトルバンドが少ない。マル チスペクトルカメラは通常、1枚の画 像で複数の波長を取得する。標準的な 広帯域幅のピクセルフィルタ構造を採

図1 プリズム技術に基づく「Sweep+|と「Fusion|シリーズのマルチスペクトルカメラは、 単一の光学経路によって異なる光スペクトルを同時に撮像する。

用するものから、狭帯域のチューナブ ルフィルタをピクセル空間に使用する ものまで、さまざまな手法が存在する。 材料検査、半導体/エレクトロニクス 検査、食品品質検査などの産業用途に 導入されているマルチスペクトルカメ ラには、エリアスキャン型とラインス キャン型がある。

例えば、加テレダイン・イメージン ググループのテレダインダルサ社 (Teledyne DALSA)は、2018年度の Innovators Awardを受賞した「Linea ML」カメラを提供している。8k画素× 4ライン/16k画素×4ラインのクア ッドリニアCMOSセンサを搭載し、3 つのネイティブRGBチャンネルと独立 した近赤外(NIR)チャンネルを備える。 このカメラは、ウエハレベルのダイクロ イックフィルタによって可視域 (400~ 700nm)と近赤外域 (700~1000nm) の波長を検知し、1回のスキャンで独 立したRGB+NIR画像をキャプチャす る。Linea MLカメラは、カメラリン クHSファイバインタフェースを介し て、75kHz×4のラインレートまたは 5GB/secのスループットを提供する。 カメラリンクを介したラインレートは 70kHzで、スペクトルチャンネルをク リアに分離するためのウエハレベルの フィルタを備える。

同社によると、8、10、または12ビ ットの出力オプションと、複数のROI (Region Of Interest: 関心領域)モード を備えるこのカメラは、印刷物検査、 エレクトロニクス検査、材料等級分類、 ウェブ検査、色選別、食品検査の分野 を対象としているという。

米JAI社は、プリズム技術に基づい て、フィルタホイールなどの可動部品 なしで単一の光学経路に沿って同時キ ャプチャを行う、複数のマルチスペク トルカメラを提供している(図1)。エ リアスキャンカメラとしては、3種類 のマルチスペクトルカメラが「Fusion | シリーズで提供されている。2個の CCDセンサを搭載する3つのモデルは、 解像度とデータインタフェースだけが 異なり、「AD-080CL | は0.8メガピク セル/カメラリンクインタフェース/ 30fps、「AD-080GE」は0.8メガピク セル/ GigE Vision インタフェース/ 30fps、「AD-130GE」は1.3メガピク セル/ GigE Vision インタフェース/ 31fpsである。どのカメラも同じマル チスペクトル概念に基づいており、1 つめのチャンネルでBayer CCDによ って可視カラー画像(400~700nm) をキャプチャし、2つめのチャンネルで モノクロセンサによって近赤外データ $(750 \sim 900 + \text{nm}) \, \text{E} + \text{r} \, \text{J} + \text{r} \, \text{f} \, \text{s}$

ラインスキャンカメラとしては、3種 類のマルチスペクトルカメラが 「Sweep+」シリーズで提供されている。 これらのプリズムベースのクアッドリ ニアカメラは、R、G、B、NIRの各デ ータに対して個別のチャンネルを提供 する。「SW-2001Q-CL」は、2048画 素×4ラインのCCDピクセルアレイを 搭載し、カメラリンクインタフェース を備え、ライン周波数は19kHzである。 「LQ-401CL」もカメラリンクインタフ ェースを備えるが、4096画素×4ライ

ンのCMOSアレイを使用し、ライン周 波数は18kHzである。「SW-4000Q-10GE」は10GigEインタフェースを備 え、4096 画素×4 ラインの CMOS ア レイを使用し、ライン周波数は72kHz である。

最後に、同社は「Wave」シリーズで も、マルチスペクトルラインスキャンカ メラを提供している。「WA-1000D-CL」 は、プリズムを装備するInGaAsライン センサを2個搭載する(1024画素×2、 カメラリンクインタフェース、ライン周 波数は39kHz)。1つめのチャンネルは、 NIR域上側とSWIR (短波赤外)域下側 (900~1400nm)に対応し、2つめのチ ャンネルは、SWIR域上側(1400~ 1700nm)に対応する。

「NIRとSWIRの範囲のさまざまな 狭帯域光源を、画像融合手法をともに 利用することにより、このカメラは、 特に食品検査やプラスチック再生など の用途において、判別が難しい物質の 検出と分類に使用することができる」 と、JAI社のマーケティングコミュニ ケーション担当マネージャーを務める リック・ディッカーソン氏 (Rich Dick erson)は述べた。

米サルボ・テクノロジーズ社(前PI XELTEQ社、Salvo Technologies)は、 フィルタを製造し、アクティブアライ メントシステムによってマイクロパタ ーンフィルタをイメージセンサに直接 取り付けることにより、マルチスペク トルカメラを開発しており、一連のマ ルチスペクトル/偏光測定イメージン グ装置を提供している。UV(紫外線)、 VIS (可視)、SWIR の各バージョンで 提供されている「SpectroCam」シリー ズのカメラは、6~8枚の交換可能な光 学フィルタで構成された、連続的に回転 するフィルタホイールをベースとしてい る。UVとVISのバージョン(それぞれ

200~900nmと400~1000nmに対応) にはCCDイメージセンサ、SWIRのバ ージョンにはInGaAsセンサが搭載され ている。

「PixelCam」マルチスペクトルカメ ラは、3~9のスペクトルバンドから のマルチスペクトルイメージングを、 最大30fpsのフレームレートで実行す ることができる。3つすべてのモデル にCCDセンサ(4または8メガピクセル) が搭載されている。カスタムメイドの ダイクロイックフィルタアレイがウエ ハレベルで焦点面アレイに組み込まれ ており、特定の可視波長および近赤外 波長におけるハイコントラストのスペ クトル情報を抽出すると、同社は説明 している。これらのカメラの検知波長 範囲は400~1000nm、フレームレー トは最大15fpsで、GigEまたはCoaX Pressのバージョンが提供されている。

加スペクトラル・デバイシス社 (Spectral Devices)は、スナップショ ット型とラインスキャン型の2種類の マルチスペクトルカメラを提供してい る。同社のラインスキャンカメラには、 オーストリアのams社が提供する、2 メガピクセルのグローバルシャッター CMOSイメージセンサ「CMV2000」 が搭載されており、3種類の標準的な 4バンドカメラと、2~16の異なるバ ンド数のカスタムカメラモデルが提供 されている。これらのカメラは、食品 の品質管理と検査やウエハ検査などの 用途をターゲットとしている。

スナップショットカメラには、同じ くams社が開発した4メガピクセルの CMOSイメージセンサ「CMV4000」 が搭載されており、複数バンドの画像 を同時にキャプチャするように設計さ れている。6種類の標準モデルに加え て、カスタムモデルが提供されており、 2~16の任意の数のバンドをフルフレ

ームレートで最大94fpsの速度でキャ プチャする。同社によると、これらの マルチスペクトルカメラは、ロボティ クス、食品加工、色測定などの用途に 適しているという。

センサについては、ベルギーの研究 機関であるimecが、「Argus」という、 CCD-in-CMOS技術に基づくマルチス ペクトルTDI (Time Delay Integration:時間遅延積分方式)イメージセン サを開発している。このセンサには、 CCDアレイ(バンド)あたり4096コラ ム、256ステージのフォーマットが採 用されており、ピクセルサイズは5.4 u mである。7つのスペクトルフィルタ をユーザーが追加可能な、7バンドバ ージョンも提供されている。

CMOSドライバと読み出し回路が統 合されたプロトタイプは、最大 300kHzのラインレートを達成する。 スペクトルフィルタを組み合わせるこ とによりマルチスペクトルTDIイメー ジングが可能で、バンド数とTDIステ ージ数はカスタマイズできる。カラー フィルタやスペクトルフィルタは、ウ エハまたはガラスカバー上に後処理で 追加可能である。

ハイパースペクトルイメージング

imec はハイパースペクトルイメージ ングを実現するために、ams社の CMOSイメージセンサCMV2000のピ クセル上に直接ウエハを配置した、既 製のハイパースペクトルイメージセン サも開発している(図2)。これらのイ メージセンサには、スナップショット モザイク型、スナップショットタイル 型、ラインスキャンウェッジ型、ライ ンスキャンCCD TDI型があり、4/ 7/16/25/32/100+/150+の各バンド オプションが用意されている。このイ メージセンサは、複数のマシンビジョ

ンカメラモデルに搭載されており、そ のすべてがさまざまな産業用検査での 使用に適している。

独シミア社 (XIMEA) は、imecのセ ンサに基づく4種類のモデルを提供し ている。2つは、16バンドと25バンド のモザイクタイルセンサで、残り2つ は、100バンドと150バンドのライン スキャンモデルである。これらのカメ ラは、最大速度170fpsのUSB3インタ フェース、または最大速度340fpsの PCIeインタフェースを備え、RGB+ NIRの波長範囲に対応する。波長範囲 はモデルによって異なり、それぞれ $470 \sim 630 \text{nm}, 600 \sim 950 \text{nm}, 600 \sim$ 975nm、 $470 \sim 900$ nm である。

「半導体薄膜加工を利用してピクセ ルレベルで狭帯域スペクトルフィルタ を適用するimecの技術は、小型化と 軽量化を実現して組込みビジョンシス テムに適したハイパースペクトルイメ ージセンサソリューションを可能とす るものだ。シミア社は、imec のハイパ ースペクトルセンサを当社のxiQカメ ラプラットフォームに搭載し、寸法を 26.4×26.4×31mm、重量をわずか 31gとすることで、重要なサイズの問 題に対応している」と、シミア社の主 要アカウントマネージャーを務めるイ ヴァン・クリムコヴィック氏(Ivan Klimkovic)は述べた。

スイスのフォトンフォーカス社 (Pho tonfocus)も、imecのセンサを搭載し た3種類のハイパースペクトルカメラ を提供している。スナップショットモ ザイク型のこれらのカメラには、16バ ンドまたは25バンドのオプションが用 意されている。GigEインタフェースを 備え、撮像速度は最大50fpsである。 波長範囲はモデルによって異なり、470~ $630 \, \text{nm}, 470 \sim 900 \, \text{nm}, 595 \sim$ $860 \, \text{nm}, 600 \sim 975 \, \text{nm}, 665 \sim$

975nmである。

上記に加えて、imec は蘭アディメッ ク社 (Adimec) と提携し、imec VNIR ハイパースペクトルシステムを開発し た。2メガピクセルのCMOSイメージ センサを搭載する、アディメック社の マシンビジョンカメラ「Quartz」をベ ースとしている。ラインスキャン型で 150以上のバンドに対応し、カメラリ ンクインタフェースを備えるこのシス テムは、470~900nmまたは600~ 1000nmの波長範囲に対応する。

imec が独自に開発したハイパースペ クトル製品も存在する。例えば、「SNAP SCAN NIR J SNAPSCAN VNIR J 「SNAPSCAN SWIR」の各システム は、USB 3.0インタフェースを備え、 スナップショット型とラインスキャン 型で提供されており、100以上または 150以上のバンドに対応する。波長範 囲はモデルによって異なり、470~ 900nm, $600 \sim 1000$ nm, $1100 \sim$ 1700nmである。

imec 以外のセンサを採用したハイパ ースペクトルカメラを開発するマシン ビジョン企業も、多数存在する。例え ば、フィンランドのスペシム社 (Spe cim)は「FX」シリーズのカメラを提 供している。これらのハイパースペク トルカメラは、ラインスキャンモード で動作し、GigE、カメラリンク、また はカスタムイーサネットのバージョン があり、産業用マシンビジョン用途を 特に対象として設計されている。

「FX50」カメラ(**図3**)は、冷却され たInSb検出器をベースとし、640ピク セルの空間分解能、2.7~5.3µmの波 長範囲、380fpsの撮像速度を備え、 カメラに用意されている154バンドか ら自由に波長を選択することができ る。同社によると、黒色プラスチック の仕分けや金属表面の汚染検出に適し

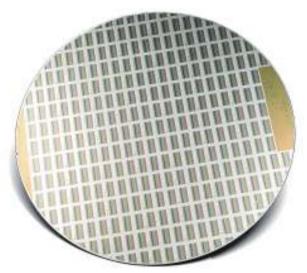


図2 imecは、干渉ベースの光学フィルタをウエハレベルで設計およ び製造している。イメージセンサのピクセルの上に直接堆積してパター ニングを施すことにより、ハイパースペクトル撮像を可能にしている。

図3 冷却されたInSb検出器をベースとする「FX50」ハイパースペ クトルイメージングカメラは、黒色プラスチックの仕分けや金属表面の 汚染検出に利用することができる。

ているという。

「プラスチックごみは大きな問題に なっている。2050年までに、海洋中 のプラスチックの量は魚の量を超える と推定されている。再生不可能なプラ スチックの大半は、従来のプラスチッ ク仕分け技術が産業要件を満たしてお らず、十分な信頼性と効率で選別でき ないために再利用ができない、混合プ ラスチックである。そこで登場するの が、スペシム社のFX シリーズのハイ パースペクトルカメラだ。FX17と最 新型のFX50により、黒色プラスチッ クを含む異なる種類のプラスチックを 最大99%の精度で識別し、分類する ことができる」と、スペシム社のセール スおよびマーケティング責任者を務め るハンヌ・メキマートゥネン氏 (Hannu Mäki-Marttunen)は述べた。

同氏はさらに、「これは、スペシム 社の最終顧客がプラスチックごみを、 プラスチック業界の原材料として再利 用可能な貴重な資源に変換できるよう になることを意味する」と続けた。

「FX17」モデルはInGaAsベースの カメラで、波長範囲は900~1700nm、 撮像速度は670fpsで、カメラに用意 されている224バンドから自由に波長 を選択することができる。ターゲット 用途は、食品や飼料の品質検査、ごみ の分別、リサイクル、水分測定などで ある。「FX10」モデルはCMOSイメー ジセンサを搭載するカメラで、波長範 囲 は400~1000nm、 撮像速度は 330fpsで、カメラに用意されている 224バンドから自由に波長を選択する ことができる。同社によると、ターゲ ット用途は、食品や飼料の品質検査、 印刷物の色/密度の検出などのマシン ビジョン分野であるという。

スペシム社は、これ以外にも多数の ハイパースペクトルカメラを提供してい る。「Fenix」「PFD-65-V10E」「sCMOS-50-V10E」の各モデルのほか、400~ 1000nmの波長範囲で携帯型の材料分 析を可能とする、ポータブル型カメラ 「Specim IQ」などが提供されている。

米ヒナリア・イメージング社 (Hina Lea Imaging)からも、ハイパースペク トルカメラが提供されている。例えば、 広視野カメラ「Model 4200」は、2.3 メガピクセルのセンサ空間分解能、

400~1000nmの検知波長範囲を備え、 最大600のスペクトルバンドに対応す る。携帯型の「Model 4100H」も提供 されており、こちらは、可視波長から 近赤外波長(400~1000nm)において、 最大550のスペクトルバンドで2.3メガ ピクセルのデータキューブを取得すると いう。このデバイスには、組込みプロ セッサと内蔵照明も搭載されている。

「食品安全検査や半導体加工におい て、当社のカメラに対する関心がかな りの勢いで高まっている。費用対効果 の高いスペクトルソリューションを導 入すれば、深いレベルの新しい情報に よって、自動検査に変革がもたらされ る可能性がある」と、エンジニアリン グ担当副社長を務めるアレクサンド ル・フォング氏(Alexandre Fong)は述 べた。

高度なマシンビジョン分野を中核市 場の1つとして位置づける米ヘッドウ ォール・フォトニクス社 (Headwall Photonics) も、スペクトルカメラを開 発する企業の1社である。例えば、同 社の「Micro-Hyperspec」カメラは、 マシンビジョンをターゲット用途の1つ

図4 400~1000nm の波長範囲に対応する 「Pika L」ハイパースペクトルカメラは、サイズがわずか3.9×4.9×2.2インチで、マシンビジョンやリモートセンシングの用途をターゲットとしている。

に挙げている。このカメラは、VNIR(可 視近赤外)、NIR、拡張NIR、SWIRの 各バージョンで提供されており、すべて カメラリンクインタフェースを備える。 具体的なモデルは以下である。「VNIR A-Series \rfloor (400 \sim 1000nm, \flat ϑ ϑ ϑ ϑ CCDセンサ、324の選択可能なスペク トルバンド、90fps)、「VNIR E-Series」 (400~1000nm、sCMOSセンサ、369 の選択可能なスペクトルバンド、 $250 \, \text{fps}$), [NIR $640 \, \text{J}$ (900 ~ 1700nm、InGaAs検出器、134の選択 可能なスペクトルバンド、120fps)、「NIR 320」(900 ~ 1700nm、InGaAs 検出器、 67の選択可能なスペクトルバンド、 346fps), [Extended VNIR 640](600 ~ 1700nm、InGaAs 検出器、267の選 択可能なスペクトルバンド、120fps)、 $\lceil \text{SWIR } 384 \rfloor (900 \sim 2500 \text{nm}, \text{MCT})$ 検出器、166の選択可能なスペクトルバ ν F, 450fps), $\lceil SWIR 640 \rfloor (900 \sim$ 2500nm、MCT検出器、267の選択可 能なスペクトルバンド、200fps以上)と なる。

同社の「Hyperspec MV」カメラは マシンビジョンに特化して設計されて おり、波長範囲は $400 \sim 1000$ nm、スペクトルバンドは270から選択可能で、カメラリンクインタフェースを備え、撮像速度は485fps である。

米ベイスペック社 (BaySpec)は、研究開発、生物医学、光通信などの業界向けのスペクトル装置を開発する企業だが、産業用検査に適したハイパースペクトルカメラも提供している。そのようなカメラの1つがUSB 3.0対応の「OCI-OEM」カメラで、同社のハイパースペクトルイメージング装置「OCI-1000」(プッシュブルーム方式、最大120fps)および「OCI-2000」(スナップショット方式、最大120fps)の光学エンジンとして採用されている。OCI-1000は最大100、OCI-2000は最大25のスペクトルバンドが選択可能で、測定波長範囲は600~1000nmである。

もう1つの選択肢が、同社の独自技術「FT-PI」を搭載する「GoldenEye」スナップショットハイパースペクトルカメラである。測定波長範囲は $400\sim1700$ nmに拡張されており、 $40\sim52$ のスペクトルバンドが選択可能で、 648×488 の空間ピクセルでフレーム

レートは1fpsである。

同様に、米レゾノン社(Resonon)は、 研究施設、屋外、リモートセンシング 向けのハイパースペクトルカメラを開 発する企業だが、マシンビジョン市場 にも目を向けている。産業用イメージ ング用途に適しているとして同社が挙 げたカメラは、以下である。「Pika L」 (図4、波長範囲は400~1000nm、281 の選択可能なスペクトルバンド、249fps、 USB 3.0インタフェース)、「Pika XC2」 (波長範囲は400~1000nm、447の 選択可能なスペクトルバンド、165fps、 USB 3.0インタフェース)、「Pika NIR-320」(波長範囲は900~1700nm、 164の選択可能なスペクトルバンド、 520fps、GigEインタフェース)、「Pika NIR-640」(900 ~ 1700nm、328の選 択可能なスペクトルバンド、249fps、 GigEインタフェース)となる。

最後に、ノルウェーのノルスク・エ レクトロ・オプティック社(Norsk Elek tro Optikk: NEO)は、産業用イメージ ング用途向けに2種類のハイパースペ クトルイメージングカメラを提供して いる。「HySpex SWIR-384」は、MCT センサをベースとし、波長範囲は950~ 2500nm、288のスペクトルバンドが選 択可能であり、フレームレートは全バ ンドを選択した場合で400fps (範囲を 絞ることによって高速化が可能)である。 また一方の「HySpex VNIR-1024」は、 CMOSイメージセンサをベースとし、波 長範囲は400~1000nm、108のスペ クトルバンドが選択可能で、フレーム レートは最大スペクトル分解能で 700fpsである。

同社によると、どちらのハイパースペクトルカメラも、スペクトル的にも空間的にも非常にシャープで、空間上/スペクトル上のずれ(スマイルおよびキーストーン)は10%未満であるという。