## Ge－on－Siエミッタが シリコンフォトニクスを前進させる

最近の数年で，シリコン $(\mathrm{Si})$ ベースの フォトニックデバイスの開発は急増し た。しかし，Siルータ（www．laserfocus world．com／articles／343738を参照）， モジュレータ，導波路，スイッチ，Siフ オトダイオード（www．laserfocusworld． com／articles／347384を参照）のほか，

ハイブリッドSi レーザ（www．laserfocus world．com／articles／343731を参照）の開発にさえ成功したにもかかわらず， シリコンフォトニックコンポーネント を集積した全Si レーザはいまだに実現 の見込みは立っていない。この議論は， シリコンフォトニクスのインターチッ


図1 モノリシックに集積されたGe－on－Siデバイス（上）は室温で直接遷移ルミネッセンスを示し た。エレクトロルミネッセンス（下のスペクトル）は電気的に注入された電流（挿入グラフ）の関数 として強度を上昇させる。（資料提供：MIT）

プおよびイントラチップネットワーク （www．laserfocusworld．com／articles／ 353971 を参照）実現に向けた正しいロ ードマップに沿って激化しているため， いくつかの研究グループは真の意味で電気的に注入されたSi光源の開発にお いて前進を遂げている。

米カリフォルニア工科大学（Cal－ tech）の研究グループによる最近の 4.2 mW の電気的に励起されたハイブリッド エバネッセントシリコン／ヒ化リン化イ ンジウムガリウム（ $\mathrm{Si} / \mathrm{InGaAsP}$ ）レー ザの実証に加えて，米マサチューセッツ工科大学（MIT）の研究グループも室温 で直接遷移（ダイレクトバンドギャップ） のエレクトロルミネッセンス（EL）を示すモノリシックに集積されたゲルマ ニウム・オン・シリコン（Ge－on－Si）発光 ダイオード（LED）を作製した ${ }^{(1), ~(2) 。 ~}$

## シリコンハイブリッド以上の良さ

電流注入は， Si 導波路に接着された， もしくはSiベースの緩衝層上に成長させ た1550nmハイブリッドIII－V Siレーザ において可能だが，作製コストが高い ため大量生産は難しい。相補型金属酸化膜半導体（CMOS）製造プロセスと互換性のあるモノリシックに集積された エミッタのほうがより優れたアプロー チだ。これは，MITチームが開発した Ge－on－Si LEDによってもたらされた結果だ。

Si とは異なり，Geは自身の間接遷移よ りも僅かしか大きくない（ 0.136 eV の差）直接遷移をもつ。非放射プロセスから の非常に低い損失で，放射で正孔と再結合した伝導帯の垂直な溝に電子を注入

するように設計できる。観察された直接ギヤップのフォトルミネッセンスは， Si 上のエピタキシャル Ge 薄膜への内面 2 軸の引張応力を取入れることによっ て押し上げられた。計算では，Geは $2 \%$ の引張歪み値で 0.5 eV （ 2500 nm ）の直接遷移材料となるため， $0.20 ~ 0.25$ という小さな歪み値が発生し，これに よってより高い品質と信頼性をもつ材料の1550nmの通信波長近傍でのバン ドギャップが得られる。

デバイスは，ホウ素ドープの Si 基板上に成長させたエピタキシャルGeによ って作製された。この基板上に蒸着し た二酸化ケイ素（ $\mathrm{SiO}_{2}$ ）層は，これに続く Ge の成長用の領域を露光するためパ夕 ン化される（図1）。 $0.20 \%$ の引張歪み

を発生させるため室温により冷却の後， $1.7 \mu \mathrm{~m}$ 厚の Ge 層を緩和させるため，成長後の熱アニールが施された。最終被覆として $n$ および $p$ 接合とともに多結晶 Siが加えられた。

電流注入が 50 mA の電流で $20 \times 100$ $\mu \mathrm{m}$ のデバイスに適用され， 0.77 eV （ま たは1610nm）の直接遷移エネルギー で光学放射を発生した。これは，研究 グループが把握する限り，Geデバイス から初めて観察された直接遷移のエレ クトロルミネッセンスだ。この直接遷移エレクトロルミネッセンスは注入さ れた電流と超線形の関係を示すため，

Ge－on－Siデバイスは電気的励起やモノリ シックな Si 上の光エミッタとして有望 な候補となる。

MIT の研究者であるシャオチェン・ サン氏は「Geは可能性のある効率的な光エミッタとして，ごく最近まで真剣に検討されてはいなかった。MITによる引張歪みの Geに対する広範囲な研究 によって，Ge LEDの実現に向かってい る。ミリワットのオンチップ光エミッタ を目指して数桁の性能向上のためさら なる設計や最適化が行われることにな っている」と語っている。
（Gail Overton）

[^0]
[^0]:    参考文献
    （1）X．Sun et al．，Optics Lett．34（9）p． 1345 （May 1，2009）．
    （2）X．Sun et al．，Optics Lett．34（8）p． 1198 （April 15，2009）．

