単一光子検出器の進歩から
恩恵を受ける蛍光顕微鏡

リチャード・K・P・ベニガー、デイビッド・W・ビストン

光子計数モードで使用する光検出器は理想的な信号対雑音比特性（ショット雑音によって制限を受ける）を提供する。最先端の単一光子計数検出器を市販の顕微鏡システムに組み込み、生細胞イメージングにおける蛍光信号の検出感度を向上させた。

生細胞、組織、全生命体内における生体分子の相互作用とダイナミクスの研究（生体内画像）は最近10年間に急激に増加した。現在、生体内顕微鏡法は生きた生命体内的特定の蛋白質、脂質、細胞全体の動力学を研究する神経科学、免疫学、発生生物学などで広く使われている。利用拡大の理由は遺伝子符号化可能な緑色蛍光蛋白質の開発と改良にある。しかし、高速で超高感度の共焦点顕微鏡（LFWJ 2007年8月号p.16またはwww.laserfocusworld.com/articles/312439を参照）と2光子顕微鏡（LFWJ 2007年4月号p.34またはwww.laserfocusworld.com/articles/283869を参照）の開発も重要な役割を果たした。

レーザー走査共焦点顕微鏡と2光子顕微鏡の中心的なコンポーネントの一つは光子検出器である。光子検出の感度は、速度と解像度を適切に制限しうれば、特定の生物学的機能の研究を可能にする。一般に、生体試料から放出される蛍光信号のレベルは励起強度に比べて数桁低い上に、励起光は光毒性や光毒性などの振動効果を避けるために低レベルに抑えなければならない。結果として、高感度光子検出器の開発が現在の蛍光顕微鏡を前進させる中心的課題になった。

検出オプション

最先端の光子検出器は高い光子検出効率、高速応答ならびに読取り、低い雑音レベル、低いパックグラウンドレベルが要求されるが、最も重要なことは信頼性が極めて高いことだ。一般に、広視野顕微鏡では電子感応素子（CCD）が使われているが、レーザー走査顕微鏡では最も広範に利用されている光子検出デバイスは光電子増倍管（PMT；LFWJ 2008年5月号p.40またはwww.laserfocusworld.com/articles/322034を参照）である。

図1 レーザー走査顕微鏡では、データは電流積分または光子計数のいずれかによって収集される。各線（画素列）はライン同期信号によって定義される。一つの画素が走査される周期（一般に画素時間によって定義された数マイクロ秒）の間に、各入射光子はPMT信号において電流パルスを発生するであろう。その電流が積分されると、暗イベント並びにパルス幅は出力信号における雑音増大をもたらす。一方、光子計数はパルスが膜別され（点線上に上昇）、成形され、続いて計数されるならば、いかなる余分な雑音も導入されない。（資料提供:バーニンクルビルト大学）

これにより、この検出モードは、中〜高レベルの
光子数に適しているが、低い信号レベルの場合には大きな雑音がPMTの增幅とデジタル化によって導入される。低レベルの光子数では、利用率を高める必要があるが、同時に雑音も大きく増幅され、得られる電流パルスの変動幅が拡大し、アフターパルスが発生する。熱電子も光電陰極やダイノード列で発生し、雑音に関係する高い暗信号を生じる。

単一光子計数（SPC）またはパルス計数は、PMTなどの光子検出デバイスで利用できるもう一つの検出方式である。光子計数PMTは、一般に、高純度で得られた暗電子データを減らすために冷却される。高感度デジタルノンクシスや高い利用はパックグラウンド電流から十分に分離された緊密に分布する電流パルスを発生させる。次いで、各電流パルスが識別／計数されることで、検出された光子の絶対数が求まり、電流積分モードで導入された余分の暗信号を除去される。この信号の雑音は高効果で制御されたショット雑音であり、明確なポアソン雑音統計を記述できる。

光子数の利点は明白だが、蛍光顕微鏡におけるその利点は限定的であった。主な制限は、光子がPMTモジュールや検出デジタルノンクシスで計数される速度である。一つの電流パルスを発生、識別、カウントする間に照射した他の光子はカウントされない。したがって、最大計数効率は、単一光子の計数に要する時間（不感時間）に関係する。最大計数効率は不感時間に比例する。さらに、光子は時間帯内でランダムに到達するため、低光子冊であっても2個以上の光子が不感時間内に入射する可能性は低い。入射光子数がカウンタされた光子数に比例する検出の線形性は最大計数効率の10%以内で達成される。従来、この限界は1MHz未満であった。典型的な生体画像データに約1秒と512 x 512ピクセルでは、1画素あたりの最大計数は約4に制限されることになる。しかし、近似数年の間、このブローチを改善する新しい技術が顕微鏡応用で大いに注目された。

光子計数法の改良

最近開発された光子計数PMTモジュールは現在数分メガヘルツ（MHz）の最高計数率をもっている。例えば、浜松ホトニクス製のH7421-50モジュールは50MHzの最高計数率が20nsのパルス解像度で得られる。これは、高度度の蛍光顕微鏡用に制御される光子レベルさえもかくに超える。

もう一つの開発はフィールド・プロセッサ・ゲートアレイ（FPGA）である。これは、1チップにプログラムされたフレキシブルコントロールによって、レーザ起が試料の単一ピクセル上を走査する数マイクロ秒間で電流パルスを識別、カウント、読出する高速動作を可能にする。これらのFPGAデバイスはトランジスタトランジスタロジック（TTL）またはエミッタ結合ロジック（ECL）とし、数十メガヘルツで動作する能力をもつ。このことは有効な画像サイズと速度において1ピクセルあたり最高数で光子を処理する高速光子計数顕微鏡検出器を開発するためのビルドイングロックがすでに入手可能なことを意味する。

最近、米バンデルビル大学のわれわれの研究グループは2光子顕微鏡におけら増幅された検出器感度を提供する簡単な光子計数デバイスを実証できたら報告した。浜松ホトニクスのH7421シリーズの光子計数PMTモジュールをうたうことによって、自分たちで組立
光子計数検出器で、低レベルの蛍光でも電流積分モードで動作する商用顕微鏡PMTよりも高い信号対雑音（SN）レーベルが得られることが定量的に証明された（図2）（1）。一つのサンプル顕微鏡画像で、SN比を内因性蛍光酵素の共同因子NADHについて濃度を変えて行った。この内因性蛍光のイメージングは細胞の代謝活動マッピングで日常的に使われているものであり、増強された感度が生物学観察の応用で達成されることを実証できた。われわれの解析は、すべての蛍光イメージング応用における基本的雑音限界であるショット雑音で信号が制限されていることも示した。われわれの検出器は、商用顕微鏡PMT検出器に存在する精密光学設計と部品を組入れることによってさらに改善されるであろう。

これらのより新しい光子計数モジュールとFPGAデバイスは可能な最高50 MHzの最大の計数率にもかかわらず、パルスバイアルアップ統計は既知であり、その範囲は参照テープルの利用で拡張可能である（図3）。検出システムの計数率限界を評価すれば、計数された光子数を厳密に明確な方法で入射光子数に関連づけ、検出器のダイナミックレンジを計算する計数率限界まで拡張することができる。もちろん、計数率限界に近づくにつれてSN比は低下するだろう。

光子計数検出器とFPGA論理回路を適用することの利点はマサチューセッツ工科大学（MIT）のビーター・ソーザ研究所における研究で実証された（2）。注文の光子計数カードはそれぞれ約30MHzの最高計数率と1MHz計数率までの線形性をもつ16の並列チャネルの識別と計数を可能にする。次いで、マルチアノードPMTユニットは、蛍光放射がマルチアノードPMTユニットを核へと分散するハイパースペクトルイメージングを実行するために、この光子計数カートと統合された。

いくつかの新しい顕微鏡システムはマルチアノード光子検出検出システムに対する機械的構造を開始している。例えば、独カールツァイス社のLSM710共焦点顕微鏡はマルチアノードPMTを核スペクトル検出器（ケーラ検出器）を発光波長に応じて使用し、試料からの蛍光が発光波長に従って多重PMT検出器ユニット間に分配される。多重並列30MHz計測ノード計数システムはこの種のシステムにとって特に魅力的にであるであろうし、さらに検出感度を高めるに適いない。

これ数年間の生細胞イメージングと生体内観察測定の利用拡大が、蛍光顕微鏡における光子検出器の感度の継続的な向上を促進している（3）。こうした前提は、光子計数検出器を商用顕微鏡システムに組込む技術がいまや入手可能であることを示唆している。われわれは、顕微鏡メーカーが、この技術を次世代顕微鏡に組込むことを開始し、生細胞顕微鏡に新天地を開くことを期待している。

謝辞

著者らは、NIH助成R01-DK53434とP20-GM72048ならびに国研総理化学自由電子レーザプログラムからの資金援助に感謝の意を表したい。

参考文献

著者紹介
リチャード・K・P・ベンニンガー（Richard K.P.Benninger）はバンデルビル大学メディカルセンターの研究室、ディビッド・W・ピストン（David W.Piston）は同センターの分子生理学・生物物理学部門の教授である。e-mail: dave.piston@vanderbilt.edu