All about Photonics

Science/Research 詳細

ラックサイズで大規模光量子コンピュータを実現する基幹技術開発

January, 17, 2022, 東京--日本電信電話株式会社(NTT)は、東京大学、理化学研究所(理研)と共同で、ラックサイズの大規模光量子コンピュータ実現の基幹技術である光ファイバ結合型量子光源(スクィーズド光源)を開発した。
 量子コンピュータは、重ね合わせ状態と量子もつれ状態という量子力学特有の現象を利用した超並列計算処理が可能なことから、世界各国で研究開発が進められている。現在様々な方式が考案され、その中でも光の量子である光子を用いて計算する光量子コンピュータには多くの強みがある。例えば、他の方式で必要とされる冷凍・真空装置が不要なため、実用的な小型化が可能。また、時間的に連続的な量子もつれ状態を作ることで、集積化や装置の並列化なしに量子ビット数をほぼ無限に増すことができる。加えて、光の広帯域性を活かした高速な計算処理も可能。さらに、一つの光子で量子ビットを表すのではなく、多数の光子で量子ビットを表す手法を用いれば、光子数の偶奇性を用いた量子誤り訂正ができることも理論的に示されている。この方式は光通信技術とも親和性が高く、通信波長帯の低損失な光ファイバや光通信で培われた高機能な光デバイスを用いることができ、実機構築に向けた飛躍的な発展が期待できる。
 とは言え、この光量子コンピュータにおいて量子性の源となるスクィーズド光は生成が難しく、これまで光通信波長帯で動作する光ファイバ結合型の高性能な量子光源が存在しなかった。スクィーズド光は偶数個の光子流であり、かつ量子ノイズが圧搾された特殊な状態の光で、量子もつれ状態生成の源となる。また、光子数の偶奇性を利用することで量子誤り訂正が可能になることから、スクィーズド光は量子誤り訂正においても極めて重要な役割を担う。これらの実現には多光子成分においても偶数性を保ち、高い量子ノイズ圧搾率を有する光が必要である。例えば大規模量子計算を実行できる時間領域多重の量子もつれ(2次元クラスター状態)の生成には、65%を超える量子ノイズ圧搾率が求められる。
 今回、光通信波長で動作する光ファイバ結合型量子光源を新たに開発し、光ファイバ部品に閉じた系で、6テラヘルツ以上の広帯域にわたって量子ノイズが75%以上圧搾された連続波のスクィーズド光の生成に世界で初めて成功した。これは光量子コンピュータにおける基幹デバイスが、光の広帯域性を保ったまま光ファイバと相互接続性のある形で実現できたことを意味する。これにより、光ファイバおよび光通信デバイスを用いた安定的かつメンテナンスフリーな閉じた系において、ラックサイズの現実的な装置規模での光量子コンピュータ開発を可能とし、実機開発を大きく前進させることができる。
 研究成果は、2021年12月22日(米国時間)に米国科学誌「Applied Physics Letters」において掲載された。

(詳細は、https://group.ntt/jp)