コヒレント特設ページはこちら

Science/Research 詳細

未利用光を利用可能な波長に変換する新しい材料プラットフォームを開発

November, 20, 2017, 東京--東京工業大学工学院 機械系の村上陽一准教授らは、太陽電池や光触媒などの様々な光利用技術で利用されずにエネルギー損失となっている光波長部分を利用可能な波長に変換するフォトン・アップコンバージョン(UC)技術の応用実現性を飛躍的に高める新しい材料プラットフォームを開発した。
 近年注目されている新しい液体「深共晶溶媒[用語1]」を媒体に用いることで、応用に望ましい性質である「低コスト・低環境負荷・難揮発性・高熱安定性・高UC効率」を同時に実現することに成功した。
本成果に関するUCの方法は低強度の太陽光にも適用可能な現状唯一の方法であり、応用への強みを有する一方、従来の実施形態では高い可燃性や揮発性を有し、不安定で環境親和性の低いものが大半で、あるいは高コストで生分解性に乏しいものに限られていたため、UC技術の応用実現に向けた障害となっていた。
 このような長所の同時実現は従来の関連技術にない顕著な進歩点であり、今回の成果はUC技術の応用実現性を飛躍的に高めたランドマークになると考えられる。
 村上准教授らは様々なエネルギー変換において未利用で損失となっている光を利用可能な光に変換する波長変換技術である「フォトン・アップコンバージョン(UC)」において、実用上多くの長所をもつ「深共晶溶媒」を用いることに着目。探索と試行を経て、世界に先駆けて試料開発に成功し、併せて試料の諸物性の解明を行った。
 光は波の性質を持つと同時にフォトンというエネルギーの粒からなる。太陽電池・光触媒・人工光合成などの光を用いたエネルギーや物質の変換には、各材料に固有な「しきい値エネルギー」(あるいは「しきい値波長」)があり、それより低いエネルギーのフォトン(しきい値波長より長波長側の光スペクトル)は現状では利用できていない。これは光エネルギーの損失であり、この点が様々な光変換技術の効率を制限する根本原因となっている。すなわち、高エネルギーのフォトン群(短波長の光)は様々な変換に用いることができ、低エネルギーのフォトン群(長波長の光)より遥かに利用価値が高い。このような光エネルギー変換における損失(無駄)を根本的に回避する方法がUC。 UCとは現状未利用な「エネルギーの低い光子群(長波長の光)」を利用可能な「エネルギーのより高い光子群(短波長な光)」に変換する波長変換操作である。
 深共晶溶媒は低コスト・低毒性な2種類の物質を混合させるだけで生成でき、一般に高い熱安定性と生分解性をもつことから、環境負荷の低い流体として近年応用探索が活発化している比較的新しい流体。深共晶溶媒は難揮発性と難燃性とを備えた安全かつ低コストの液体である。深共晶溶媒を形成可能な原料の組み合わせは無数に存在し、事実上無限の種類が可能なため、用途や目的に応じて2種類の原料を適切に選択する必要がある。
 今回の研究では、深共晶溶媒の探索と試行により、ある一群の「疎水性深共晶溶媒[用語2]」がUCの目的に適することを見出し、これが成果につながった。緑色光から青色光へのUCを実現し、試料の熱安定性(難着火性)を確認した。
 さらに試料のUC効率が、用いた深共晶溶媒を構成する2つの成分比によることを見出し、様々な光計測実験結果に基づき、その理由を解明した。最大の変換効率を示した試料はUC量子収率(最大が0.5の定義;UCでは2個の低エネルギー光子から最大1個の高エネルギー光子を生成するため)が0.21に達した。これは、最大効率を100%とした量子効率では42%にあたる、比較的高い値である。
本成果の意義はUCを行う有機分子の媒体に深共晶溶媒を用いることに着目し、目的に適する深共晶溶媒を見出したこと、そして低コスト・低環境負荷・難揮発性・高熱安定性・高効率の長所を同時に実現したフォトン・アップコンバーターを初めて開発し、UC技術の応用実現性を飛躍的に高めたことにある。
 研究成果は、Physical Chemistry Chemical Physicsに掲載された。
(詳細は、www.titech.ac.jp)